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The retrieval (in 
the mean) shows 
significant 
overestimation at 
light rain rates, 
underestimation 
at heavy rain 
rates. 

Motivation
KIDD ET AL. 2017: 
Normalised density 
scatterplots of the V05 
GPROF and DPR-Ku 
precipitation products 
versus surface radar data 
over the United States 
region; all products are 
compared at a nominal 
resolution of 15x15km 
(note that zero values are 
plotted along the x and y 
axes)   - relationship is 
different over Europe



Approach
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How can we add 
information?

Brightness 
temperature 

changes

1.High-frequency      
D Tb

2.Low-frequency       
D Tb

Emissivity 
changes

3.Low-frequency       
De

4.Chi-squared 
cutoff in OE 

retrievals

You et al., JHM, 
2017 

You et al., JGR,
2018 

Ringerud et 
al., 2019 
(see poster)

You et al., 2019
(see poster)
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Empirical Approaches: TB temporal variation (ΔTB)

∆𝑻𝑩 = 𝑻𝑩𝒕𝑷 − 𝑻𝑩𝒕𝑪
• 𝑇𝐵+,is the current TB associated with precipitation.

• 𝑇𝐵+- is the preceding TB at the same location without precipitation. 

• ΔTB is not the difference between two temporally consecutive TB 

observations. ∆𝒕 = 𝒕𝑷 − 𝒕𝑪

• Δt is the time difference between these two observations.

• To mitigate the surface temperature influence, we use the emissivity 

temporal variation for accumulation retrieval, derived from TB.
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Corr. from TB Corr. from ΔTB

ΔTB correlates more strongly with precipitation rate than TB

(c) (d)

Approach 1: Improve cold surface precip. retrieval

You et al., JHM, 2017 

V89

V190
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• (V89, H89, V166, H166, V186, V190) vs. (ΔV89, ΔH89, ΔV166, ΔH166, ΔV186, ΔV190)

• Simple linear regression (2014-2015 training; 2016 validation).

• Northeast United States (37N-47N, 65W-80W).

• Largest improvement is at the lower end of precipitation intensities.

Approach 1: Improve cold surface precip. retrieval

You et al., JHM, 2017 
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Approach 2: Low-freq channels for rainfall retrieval

Time series from March 2014 to December 2015 the 0.5∘ grid box of 101W, 42N 
for (a) H19, (b) V89, (c) ΔH19, (d) ΔV89, and (e) precipitation rate. The red circles 
in panels (a) and (b) represent the precipitation observations identified by V19 − 
V89 greater than 8 K.

You et al., JGR,2018 

H19

V89

DH19

DV89

H19

V89

DH19

DV89



• Munchak et al. 2019 (in revision) developed OE retrieval for emissivity, 
water vapor 
• Will be implemented in CMB V7 – take a look at how could enhance 

passive retrievals

Munchak et al. 2019 (in revision)

Physical Approaches: Depend on Emissivity Retrieval
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Approach 3: Clear-sky TB to retrieve accumulation

Mean Equatorial crossing time (local time in the morning) for nine sun-synchronous 

satellites. Satellites with imagers onboard are in blue (i.e., AMSR2 onboard GCOM, 

SSMIS onboard F16, F17, and F18), and with sounders onboard are in red (i.e., ATMS 

onboard SNPP, AMSU-A onboard NOAA-18, NOAA-19, MetOp-A, MetOp-B).  The GPM 

satellite has a precessing orbit, which means that it overpasses a certain location at varying 

times throughout the day.

Based on the Equatorial crossing time, and the 

radiometer type (imager vs. sounder), we conduct four 

retrieval experiments with the emissivity temporal 

variation (∆e) from 19 to 89 GHz derived from different 

sensors combinations:

• ∆e derived from GMI only (GMI-only).

• ∆e derived from five imagers, including AMSR2, 
three SSMISs, and GMI (5-imager).

• ∆e derived from GMI, AMSR2, AMSU-A onboard 

NOAA19 and MetOp-A, and SSMIS onboard F16 

and F17 (6-satellite with very different 

crossing time).

• ∆e derived from all 10 satellites (10-satellite).

sounders

imagers

You et al., 2019 (see poster)
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Approach 3: Clear-sky TB to retrieve accumulation

Better retrieval performance  with 
multiple satellites:
(1)The time difference between the 

raining day and the non-raining day 
is shorter with multiple satellites; 

(2)The emissivity diurnal cycle is better 
captured with multiple satellites.

GMI-only 5-imagers

6-satellites/better times Full 10-satellites

You et al., 2019 (see poster)



1. Use Emissivity to Dynamically Identify 
Snowcover in Retrieval

2. Munchak non-raining OE retrieval is “first 
pass”
• Currently set up for GMI, non-snow covered 

surfaces
• Normalized error parameter resulting from 

optimization process is used to identify potential 
areas of precipitation

• Retrieved TPW is interpolated across regions 
above the cutoff

• Dynamic emissivity is taken from recent non-
raining values along with a small range relaxed to 
account for water on the surface

3. Apply GPROF using dynamic TPW and 
emissivity

4. Results show promising improvement in 
GPROF false alarms
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Ringerud et al. 2019 (See poster)

Approach 4: Non-raining OE coupled with Dynamic Constraint 
Bayesian/GPROF



 False Alarms Using .1
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 False Alarms Using .3
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 False Alarms Using .5
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 False Alarms Class
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Correlation Bias RMSE FAR POD

Chi-sq > .1 0.47 0.044 1.04 0.29 0.91

Chi-sq > .3 0.47 0.038 1.04 0.15 0.84

Chi-sq > .5 0.47 0.035 1.04 0.08 0.75

Class 0.47 0.045 1.07 0.29 0.9

Ringerud et al. 2019 (See poster)
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Our work also implies that:

• Future satellite missions (either constellation of CubeSats or Geo-Microwave) may further 

improve ΔTB retrieval performance (ideally same sensors & equally spaced time series).

• There is information about 

the land surface 
“background” in both 
brightness temperatures 
and emissivities.

• Dynamic emissivity 

information may be used 
to reduce false alarms and 
improve detection of light 
rain

Summary

How can we add 
information?

Brightness 
temperature 

changes

1.High-frequency      
D Tb

2.Low-frequency       
D Tb

Emissivity 
changes

3.Low-frequency       
De

4.Chi-squared 
cutoff in OE 

retrievals


